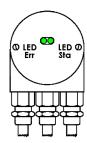


MHM510-DNET, le codeur standard Ø58mm à transmission DeviceNet :

- Conception compacte et robuste.
- Version axe sortant Ø 10 mm.
- Roulement de précision avec joint d'étanchéité.
- Hautes performances en température 40°C à 85°C.
- Disque codé en matériau indéformable et incassable.
- Mémorisation mécanique du nombre de tour par pignonnerie.
- Résolution: 13 bits = 8192 pts / tour (max 16bits).
- Nbre de tours : 12 bits = 4096 tours.
- Protection contre les inversions de polarité et les pics de tension.
- Technologie CMS à haute intégration.
- Egalement disponible en version Profibus, CANopen et SSI.



DeviceNet²

Visualisation de l'état du codeur par 2 LEDs dans la boîte à bornes arrière

LED Err	LED Sta	Etat			
éteinte	éteinte	Le codeur n'est pas alimenté.			
éteinte	allumée	le codeur attend le message de mise en service. Le codeur est en mode de préparation.			
clignotante allumée		Le message de mise en service a été reçu par le codeur. La configuration de l'appareil est possible.			
allumée	allumée	Mode opérationnel normal.			

CARACTERISTIQUES MECANIQUES

	Capot : aluminium			
Couple Vitesse (Max en continue)	Embase : aluminium			
,	Axe: Inox			
Chargos mavimalos	Axiale: 40 N			
Charges maximales	Radiale: 110 N			
Inertie de l'axe	≤ 30 g.cm²			
Couple	≤3 N.cm			
Vitesse (Max en continue)	6 000 tr/min			
Tenue chocs (EN 60068-2-27)	≤ 100 g (demi sinus, 6 ms)			
Tenue chocs (EN 60028-2-29)	≤ 10 g (demi-sinus, 16ms)			

Vibrations (EN 60068-2	2-6)	≤ 10 g (10Hz 1 000Hz)		
Masse (version alumin	ium)	600 g		
Température d'utilisat	ion	- 40 + 85°C		
Température de stock	age	- 40 + 85°C		
Humidité relative		98 % sans condensation		
Dográ do protoction		Capot: IP65		
Degré de protection		Embase: IP64		
Durée de vie mécanique théorique 10° tours (F _{axial} /F _{radial})				
40 N / 60 N	40 N	/ 80 N	40 N / 110 N	
25		10	4	

CARACTERISTIQUES ELECTRIQUES

Interface	Suivant ISO/DIS 11898
Transmission	max 500kBaud
Adressage	Par switchs rotatifs
Alimentation	10-30Vdc
Consommation	max 100mA (24Vdc)

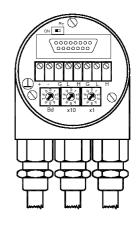
Puissance	max 2,5W
Fréquence sur le LSB	800 kHz
Précision	+ ½ LSB
CEM	EN 61000-6-4 EN 61000-6-2
Durée de vie électrique	> 10 ⁵ h

MODES DE TRANSMISSION

Mode POOLING	Sur réception d'un télégramme, l'hôte connecté demande la valeur de la position actuelle. Le codeur lit cette position, calcule éventuellement les paramètres et renvoie la valeur du process obtenue au même identifiant.
Mode CHANGEMENT D'ETAT	Le codeur surveille la valeur actuelle du process et transmet sa valeur de position actuelle en cas de changement de position. Dans ce mode, on augmente considérablement la ''réactivité'' du bus, parce que le participant ne fournit son information qu'en cas de changement d'état.
Mode CYCLIC	Le codeur fournit son information en relation avec un timer programmable. Comme dans le mode précédent, on réduit la « charge » du bus, parce que l'esclave ne répond qu'à intervalle de temps régulier, sans attendre la demande du maître.

PARAMETRES PROGRAMMABLES

Sens de croissance du code	Ce paramètre détermine le sens de croissance du code (croissant sens horaire, décroissant sens anti- horaire ou inversement).				
Résolution par tour	Le paramètre résolution permet de programmer le nombre de pas par tour souhaité. Toute valeur entre 1 et la résolution physique du codeur (8192 en standard) est programmable.				
Résolution totale "MAX-RANGE"	C'est la résolution totale voulue sur l'échelle de mesure. Cette valeur ne doit pas dépasser la résolution Maximale de l'appareil (25 bits : 33.554.432). Lorsque le codeur est utilisé dans des applications ou il y a rebouclage certaines règles doivent être respectées. Ces règles sont décrites dans le manuel.				
Présélection	La présélection représente la valeur de position désirée à une position quelconque de l'axe. A travers ce paramètre, on programme la valeur souhaitée à l'endroit voulu.				


INSTALLATION

L'appareil est raccordé via 3 câbles. Un PE PG9 est prévu pour le câble d'alimentation (2 fils). 2 PE PG9 du côté droit du boîtier (cf schéma ci dessous) sont prévus pour le câble du bus. Les PE permettent le passage de câble de 6.5 à 9mm de diamètre.

CONFIGURATION

Le numéro de nœud se fait via 2 commutateurs rotatifs dans la boîte de raccordement. Les Adresses programmables vont de 0 à 63, sachant que chaque participant au bus ne peut posséder qu'une seule adresse.

La boîte à bornes intègre également une résistance de fin de bus activée par un dip switch, qui permet le rebouclage de la liaison.

REFERENCE (Exécution spécifique sur demande, ex: bride/électronique/connectique spécifique..)

MHM5	D2	B1	В	12	13	С	10	0	0CC
Codeur absolu multitour	DeviceNet	Version	Code : Binaire	Nombre de tours : 2 ¹² (4 096)	Résolution dans le tour : 2 ¹³ (8 192)	Bride à vis et synchro	Diamètre de l'axe : 10mm	Sans option mécanique	Sortie boîte à bornes

CODE DE COMMANDE: MHM510-DNET-001 = MHM5 - D2 B1 B - 12 13 - C 10 0 - OCC

